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Abstract A review of the literature reveals that the optimal shape of natural convective cavities
has not been investigated so far. A prominent application of cavities cooled by natural convection
arises in the miniaturization of electronic packaging where some type of temperature constraint
must be applied at the directly heated wall. This contemporary issue has been addressed in the
present work in an elegant manner by linking a code on computational fluid dynamics with a shape
optimization code. Once the velocity and temperature fields were accurately computed for an initial
cavity with a certain heat load, a two-step optimization procedure was implemented in a methodical
Jfashion. A first optimization sub-problem transformed a square cavity into a rectangular cavity,
while the second optimization sub-problem sculpted the shape of the upper hovizontal insulated wall
in order to bring down the maximum wall temperature of the divectly heated vertical wall, i.e. the
so-called “hot spot”. A bird’s eye inspection of the numerical results revealed that the first
optimization sub-problem produced a significant reduction in area (volume), while raising the
maximum wall temperature of the heated vertical wall by a small amount. The second optimization
sub-problem supplied a remarkable decrease in the maximum wall temperature of the heated
vertical wall, carrying with it a moderate increase in area (volume). At the end, the optimal shape of
the cavity turns out to be a disfigured vertical rectangular cavity in which the upper insulated wall
forming a parabolic-skewed cap.

Nomenclature _ _

A = aspect ratio of cavity, H/W Nuy = average Nusselt number, 2H/k

p = specific isobaric heat capacity, J/kgC  p = pressure, Pa

g = acceleration of gravity, m/s Pr = Prandtl number, uc,/k

h = local convective coefficient of ¢ = applied heat flux at the left vertical

B internal fluid, W/m?C wall, W/m?

h = average convective coefficient of Ray = modified Rayleigh number, g

B internal fluid, W/m?C (BlkvAqH*

e = average convective coefficient of T = temperature, C
external fluid at the right vertical Tw = temperature of external fluid, C
wall, W/m?C u,v = velocities in the x- and y-directions,

H = cavity height, m m/s

k = thermal conductivity, W/m C x,y = coordinates, m

Nu, = local Nusselt number, /x/k w = cavity width, m



Greck letters Optimization of

B = isobaric coefficient of volumetric v = kinematic viscosity, m?/s ir-filled
thermal expansion, 1/K p = density, kg/m® an atr- 'e

“ = dynamic viscosity, N s/m? cav1ty
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The study of natural convection in four-sided cavities has been and continues to be an
area of considerable interest from the joined standpoint of fundamental and applied
research in fluid dynamics and heat transfer (Gebhart et al, 1988; Raithby and
Hollands, 1998). The motion of a fluid is usually induced in a stationary cavity even
when small temperature differences are applied at the thermally active walls. Heat
transfer through the cavity walls causes density changes to the confined fluid. This
action leads to buoyancy-driven fluid circulation resulting in velocity fields that are
highly dependent on the temperature fields. A set of varying design parameters in
natural convection cavities normally determines the flow structure and the cavity
performance for specific industrial tasks. This scenario represents an important type of
buoyant flows occurring in various branches of engineering, geophysics,
environmental sciences, etc.

Natural convection affords a gratifying means of thermal management of computer
systems that eliminates the fan or the pump, and consequently provides a pleasant
environment free of noise and vibration. The study of heat transfer from arrays of
discrete heat sources mounted on a wall of cavities is motivated by specialized
applications in the cooling of electronic components. Heat dissipation of chips is
continually increasing in modern electronic equipment as a result of expanding circuit
integration and power. In addition, miniaturization of electronic devices has played a
decisive role in modern era because the heat flux density has increased beyond the
levels encountered earlier in electronic technology. Since the maximum allowable chip
temperatures for electronic devices are limited by different requirements, a variety of
novel hydrodynamic and thermal control techniques have evolved in the past to meet
strict temperature criteria in industry (Peterson and Ortega, 1990). Many different
schemes have been discussed in state-of-the-art review articles and do not need to be
repeated here.

The present study was motivated by the need for miniaturization of passive cooling
systems that use closed cavities with natural convection heat removal. In this regard,
attention has been focused on the temperature rise of the directly heated vertical wall of
a cavity and the imminent desire to lower it. In square or vertical rectangular cavities,
the hot fluid flows upward parallel to the vertical heated wall. The fluid starts to turn
away from the heated wall and moves toward the upper horizontal insulated wall well
below reaching the corner. This change in direction results in a reduction of convective
heat transport in the vicinity of the corner that sees a heat flux discontinuity. The
fulfillment of a design objective may necessitate the alteration of the shape of one
(or more) of the walls that conform the cavity. Although contemporary codes on
computational fluid dynamics can predict the thermal management of natural
convective cavities of fixed shapes, these codes do not offer any significant insight into
how to improve the performance by varying the design parameters. Generally, the
design engineer has to resort to experience, intuition and experimentation to improve
the thermal performance of cavities in a laborious trial-and-error manner. Some of the
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design parameters of cavity flows are related to the geometrical shape and these
elements are difficult to determine beforehand. As a result, shape optimization has
become a major area of research in design engineering. Focusing our attention on
natural convection cavities, the shape optimization seeks to mathematically determine
the best set of design parameters that are capable of providing the highest thermal
performance of cavities subjected to certain constraints.

The body of the paper is divided into four sections. In Section 2, the physical system
and the mathematical formulation are addressed. The computational procedure and
the code validation are explained in Section 3. Section 4 is devoted to the shape
optimization algorithm. Finally, Section 5 contains a test problem, a discussion of the
numerical velocity and temperature fields, and the revelation of the optimal shape of
the cavity.

1.1 Literature review

There is a wealth of technical publications that have dealt with natural convection
cavity flows in the past. From a historical perspective, the earliest investigation on this
kind of confined flow was done by Batchelor (1954). This author considered cavities
with large aspect ratios A = H/W ranging from about 5 to co and fluid flows are
characterized by small Rayleigh numbers. The conclusion was that, if A is large, there
was a small increase in the heat transfer over that due to conduction alone for Ra <
1,000. Additionally, conduction was also shown to be the mechanism of heat transfer
for large aspect ratios, i.e. A — oo associated with any Ra. For large Ra, the core or the
central region of the rectangular cavity away from the vertical boundary layers
adjacent to the walls was assumed to be isothermal. The prominent experimental
studies of Eckert and Carlson (1961) and Elder (1965) convincingly confirmed for the
first time that the core region of the cavities was relatively stagnant and the
temperature was almost linearly stratified.

Actual cavities occurring in engineering practice often have their shapes differing
from the conventional square, rectangular or polygonal geometry that are customarily
used in theoretical and experimental studies. There have been considerable advances
in the study of natural convection in cavities of arbitrary shape due to the development
of efficient computational methods for solving the Navier-Stokes and energy equations
in non-Cartesian coordinates, e.g. the finite element method and the finite difference
method with embedded boundary fitted coordinates (Raithby and Hollands, 1998). In
this broad context, numerous studies have looked at a wide variety of cavity
configurations and the list of references (Akinsete and Coleman, 1982; Asako and
Nakamura, 1982; Chang ef al., 1982; Chung and Trefethen, 1982; Facas, 1993; Holtzman
et al. 2000; Hyun and Choi, 1990; Iyican et al, 1980a, b; Karyakin et al., 1988; Kim and
Hyun, 1999; Lam ef al., 1989; Lee, 1984, 1991; Maekawa and Tanasawa, 1982; Naylor
and Oosthuizen, 1994; Nithiarasu et al., 1998; Peric, 1993; Poulikakos and Bejan, 1983;
Salmun, 1995; Van Doormaal ef al., 1981; Yiincii and Yamac, 1991) is representative of
this effort. Despite the papers cited here, it could be categorically stated that the
essential effects of optimizing the shape of cavities and/or lowering the maximum wall
temperature at the directly heated wall to avoid undesirable “hot spots” are still
unknown. To the best knowledge of the authors, no information is available in the vast
literature on thermo-fluid dynamics that furnishes the optimal shapes of natural
convection cavities a priori with the help of shape optimization theory.



2. Conservation equations

The physical system shown in Figure 1(a) [1] consists of air confined to a square cavity
in which the left vertical wall receives a uniform heat flux and the right vertical wall
dissipates heat by convection to an external fluid (normally atmospheric air). The x and
y coordinates are chosen in the respective horizontal and vertical directions. The
dimension perpendicular to the plane of the diagram in Figure 1(a) is assumed to be
long enough, so that the buoyant airflow may be conceived as two-dimensional.
The gravitational acceleration acts perpendicular to the insulated horizontal walls. The
above physical system seeks to approximate a practical flow situation related to
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Figure 1.

(a) square cavity;

(b) rectangular cavity; and
(c) capped rectangular
cavity
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the passive cooling of a tightly-packed array of discrete heat sources that are
flush-mounted on the left vertical wall.

In general, the effect of properties changing with temperature is important in
natural convection studies because the velocity and temperature fields are interlocked.
It is a common practice to assume that the specific heat capacity, the dynamic viscosity
and the thermal conductivity of air vary in such a way that the Prandtl number Pr
remains constant or at least the average properties can be used in evaluating the
Rayleigh and Prandtl numbers. The situation for a cavity filled with an ideal gas
(Pr=0.7) whose dynamic viscosity and thermal conductivity increase with
temperature following Sunderland law was examined by Chenoweth and Paolucci
(1986). These authors have shown that the Boussinesq approximation gives accurate
computations of the overall heat transfer across a differentially heated cavity for
temperature ratios (7, — 7¢)/Tm < 0.6 where Ty, = (T}, + T)/2 stands for the
mean temperature. Under these premises, the physical properties of the air filling the
cavity are taken as temperature-invariant in this work, except for the density which is
handled with the Boussinesq approximation. Accordingly, under the assumption of
laminar two-dimensional motion, the velocity and temperature fields of incompressible
air are described by the following system of conservation equations:

mass:
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The flow boundary conditions are based on rigid solid walls that are impermeable. The
thermal boundary conditions are of mixed type: a uniform heat flux (von Neumann) at
the left vertical heated wall and convection (Robin) at the right vertical cooled wall. The
two connecting horizontal walls are insulated. For conciseness, the set of flow and
thermal boundary conditions are listed in Table I. It should be added that the above
physical system is amenable to experimentation because the heat flux boundary
condition is easy to establish in the laboratory.

The interaction between natural convection of a fluid confined to a cavity and
external convection in an open space through a cavity wall has been examined by
Sparrow and Prakash (1981). The development of the boundary layer natural
convection in a cavity heated and cooled with a uniform heat flux was documented by



Kimura and Bejan (1984). These two papers are the only ones that are somewhat
connected to the cavity problem stated in the preceding subsection. It should be added
that the design optimization component was excluded in the two cited works.

3. Numerical computations

An inspection of Table I indicates that the physical domain does not possess thermal
symmetry with respect to a vertical axis and inevitably, the physical and
computational domains have to coincide. In addition, the non-Dirichlet nature of the
four thermal boundary conditions implies that the temperatures along the four straight
walls forming the cavity are unknown in advance. Hence, the magnitudes of the wall
temperatures must be determined as an integral part of the solution procedure.

The system of four coupled conservation equations (1)-(4), subject to the boundary
conditions listed in Table I was solved by the finite-volume procedure (Tannehill ef al,
1997). The numerical solution delivers the velocity field in the air subdomain and
temperature field in the air/solid subdomain. The commercial CFD code FLUENT
(1996) was used for this first phase. Validation of the code results was performed with a
well-known benchmark solution for a square cavity having two isothermal vertical
walls and two insulated horizontal walls (De Vahl Davis, 1983). Starting with a
relatively coarse 30 X 30 mesh, several mesh sizes were tested for combinations of wall
temperature differences and thermo-physical properties of air that are conducive to a
Rayleigh number Ray that revolves around 10° After nondimensionalizing
the variables with the scales H, v/H and T3-T,, it surfaces up that the numerical
solution depends on two parameters: the Rayleigh number Ra and the Prandtl
number Pr.

Based on a sequence of numerical experiments for air (Pr = 0.7) as the coolant, it
was decided that a 60 X 60 mesh was sufficiently fine so that the velocity and
temperature predictions were found to be accurate, dependable and consistent
(Table II). The vertical velocity v is the essential variable in the analysis of cavity flows
and the estimates for V.« are within 5 percent of the results of De Vahl Davis (1983).
The convergence criteria of the velocities and temperatures was overseen with the
following norm

1 N
S (g ) = 5)

d’max i—1

where typically e = 10~%. Further decrease in & does not cause any significant changes
in the results. Therefore, the success of the CFD code in simulating natural convection
flows of air in square cavities has been demonstrated. Besides, the overall energy
balance, written in terms of the integrated heat transfer rate through each thermally

Location Velocity Temperature

Left vertical wall u=v=>0 —koTlox = qy

Right vertical wall u=v=20 —koT/ox = ho(T—T)
Upper horizontal wall u=v=20 oT/oy =0

Lower horizontal wall u=0v=>0 0T/oy =0
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Table 1.
Description of the
boundary conditions
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Table II.

Comparison of
representative quantities
of the velocity and
temperature fields of air
for Ra = 10°

active wall, must be equal. Agreements to less than 1 percent of the total, average
Nusselt number Nuy were found for the aforesaid case. After convergence to the exact
velocity and temperature fields was attained, streamlines and isotherms were
calculated.

4. Design optimization

4.1 Background

Computational tools for engineering analysis such as CFD codes and structural
analysis codes have improved and have become routinely used in designing
engineering components. Included in this set of computational tools are powerful
computer codes that are commercially available.

Software tools for shape optimization have also matured and proven to be extremely
effective for the optimal design of structures (Ding, 1986; Haftka and Granghi, 1986).
The maturity of the synergistic combination of tools on engineering analysis with tools
on shape optimization still needs improvement for design engineers to be able to fully
utilize them in design environments with confidence. As this happens, the design
engineer may be able to start with an initial design and allow the “2” number of design
variables (including shape change variables) to vary in order to find the best option
that complies with the design objectives that exist in the #-dimensional design space.
The design space may be constrained by physical limitations (space, weight, etc.) and
perhaps by bounds imposed by the design engineer (specifications, requirements, etc.).

To find optimal extrema in the design space, the present study employed a
specific optimizer that relies on search algorithms. The specific algorithm
utilized here is the gradient-based hybrid sequential quadratic-programming
generalized-reduced-gradient (GRG) method (Parkinson and Wilson, 1988). Other
search algorithms fall under the category of nongradient based algorithms. However,
for the type of problem faced in this work, the GRG algorithm was considered fast,
robust, and capable of handling the constraints efficiently.

It is a widely known fact that major components of engineering systems are
functions of geometry. The ability to deform the original shapes of such components to
arbitrary shapes enhances the design potential of the coupling of engineering analysis
software with optimization software. The optimization phase of this study employs an
arbitrary shape deformer algorithm that is qualified to change the shape of an initial
geometry of a component that needs to be optimized, ie. the shape of a natural
convection cavity in the present study.

Quantity Present work De Vahl Davis (1983)
Upax 68.81 64.630
Y 0.87 0.850
Vinax 221.80 217.360
X 0.04 0.038
Nug max 17.87 17.925
Y 0.04 0.038
NUH min 1.02 0.989
Y 0.99 1.000

Nug 8.75 8.799




4.2 Arbitrary shape deformer

The arbitrary shape deformer (ASD) is a powerful sculpting method that deforms a
given ambient space. Conceptually, ASD is a generalization of a B-spline volume with
the added capability to model a multitude of volumes of general topological structure
(Farin, n.d.). ASD is able to produce both local and global deformations using either
Bezier functions or nonuniform rational B-spline surfaces (NURBS). The geometry can
be defined as computer-aided design data, freeform entities (e.g. Bezier surfaces,
NURBS, etc.) or mesh entities (a finite element, a finite volume, etc.). ASD is
user-defined to surround the volume containing the model geometry that needs to be
optimized. As the ASD’s control points are moved, the model geometry experiences
gradual deformations. The updated model geometry is then employed as input for the
subsequent analysis. The shape deformation algorithm is versatile and delivers
enough degrees of freedom to achieve the desired changes in shape. The deformations
may range from a fine local to a gross global character using very few shape changes
related to the design variables. ASD is numerically stable and delivers the shape
optimization for a mesh of high quality without further refinement.

Figure 2 shows a flowchart of the major elements that constitute the design
optimization cycle. A major component of this cycle is a suitable commercial computer
code for the automatic shape optimization. As mentioned earlier, the first part of this
study employed the CFD code FLUENT (1996). For the second part of the study, the
shape optimization code OptdesX (1995) is utilized [2]. The latter code possesses several
robust and efficient gradient- and non-gradient-based optimization search routines.

Without any exception, it may be reaffirmed that all publications pertinent to
natural convection cavities cited in Section 1.1 were limited to a shape of a cavity
decided a priori without paying attention to its optimal geometric, hydrodynamic and
thermal features. On the contrary, the central objective of this investigation is centered
in the optimization of the cross-sectional area (volume) of a cavity (without specifying
its shape in advance). The desired cavity is subject to a temperature constraint in the
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Figure 2.
Design optimization cycle
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vertical wall heated with a uniform heat flux. A sequence of two optimization
sub-problems is posed as follows.
(1) First optimization sub-problem

Find: shape change control variables
To minimize: cross-sectional area (volume) of a cavity

Subject to: (1) An upper limit of the maximum temperature of the directly heated
vertical wall

(2) Shape of four sides to remain straight
(3) Top and bottom walls remain straight and horizontal

(2) Second optimization sub-problem
Find: shape change control variables
To minimize: maximum wall temperature of the directly heated vertical wall

Subject to: (1) Width of cavity to remain constant from the first optimization
sub-problem

(2) Upper insulated wall can be nonstraight
(3) Bottom insulated wall remains straight and horizontal

5. Optimal design of a cavity

We commence with a conventional initial cavity: a square cavity of cross-sectional area
10 X 10 cm filled with air (Pr = 0.7) that is shown in Figure 1(a). The set of design
parameters is enunciated now: the left vertical wall receives a uniform heat flux of
intensity g, = 200 W/m?, the right vertical wall rejects heat to an external fluid and
the top and bottom horizontal walls are insulated. The external air temperature is
T. = 27°C resulting in an average convective coefficient s = 20 W/m?C. These
design parameters impart a modified Rayleigh number Ray = 7 X107 to the left
vertical wall. The design constraint stipulates that the maximum temperature of the
directly heated vertical wall cannot exceed a ceiling value of 137°C.

Accurate velocity and temperature fields have been calculated with a fine 60 X 60
mesh chosen earlier for the benchmark solution of a square cavity with two isothermal
vertical walls and two insulated horizontal walls (De Vahl Davis, 1983).

In the boundary layer regime of a square cavity with uniform heat flux heating, the
core 1s motionless and the temperature linearly stratified (Kimura and Bejan, 1984).
From the physics of fluids, it is evident that the velocity of the heated air parallel to the
left vertical wall slows down as the fluid approaches the upper left corner. This
velocity pattern near the corner is the result of the viscous drag on the fluid caused by
the proximity of the insulated horizontal wall. Figures 3(a) and 4(a) show the velocity
and temperature fields of the square cavity indicating a maximum velocity of 7.47 cm/s
in the vicinity of the upper left corner and a temperature of 127°C at the upper left
corner (the “hot” spot). Aside from a palpable large volume of stagnant air that lies in
the central part of the square cavity, these two plots are standard and do not need
further explanation.
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Figure 3.

Velocity vector plots for:
(a) square cavity;

(b) rectangular cavity; and
(c) capped rectangular
cavity

Note: This figure is reproduced from the best original supplied
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Isotherms for: (a) square
cavity; (b) rectangular
cavity; and (c) capped
rectangular cavity

Note: This figure is reproduced from the best original supplied

Beginning with the square cavity, the first optimization sub-problem was posed to find
a related four-sided cavity of minimum cross-sectional area (volume) with all walls
constrained to be straight and the top and bottom insulated walls to remain horizontal.
Also, the maximum temperature of the heated vertical wall was constrained to be less
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than or equal to a ceiling value of 137°C (a design constraint). In the midst of this, two
shape change control variables were defined to allow the right cold vertical wall to
move freely in the horizontal plane. One control variable was defined at the upper right
corner, while the other control variable was defined at the lower right corner.
Subsequently, the shape optimization code OptdesX with the ASD was applied. This
step leads to a modification of the two control variables producing at the end the
rectangular cavity that is shown in Figure 1(b). As the shape optimizer moved the right
cold vertical wall toward the left heated vertical wall, the air mass was compressed
appropriately and the square cavity was squeezed. The maximum temperature on the
left vertical wall at the upper left corner of the rectangular cavity increased until the
wall temperature constraint of 137°C was reached. Figures 3(b) and 4(b) show the
velocity and temperature fields of the rectangular cavity (height-to-width ratio > 1)
showing the minimum area (volume) sought. Herein, it is interesting to realize that the
optimization algorithm had the necessary degrees of freedom to find a four-sided
cavity with arbitrary lengths for the top and bottom insulated walls. In addition, it is
important to underline that the stagnation region in the central part of the rectangular
cavity has been removed almost completely. Here again, it is worth noting that similar
to the square cavity, in a vertical rectangular cavity the air velocity slows down as the
fluid approaches the upper left corner. As far as the cavity dimensions are concerned,
the final width of the rectangular cavity is merely 2 cm, resulting in a reduced area of
20 cm? This area turns out to be a meaningful 80 percent decrease with respect to the
area of 100cm? of the original square cavity. Now, the corresponding maximum
velocity reached 7.91 cm/s in the vicinity of the upper left corner and the maximum
wall temperature at the upper left corner equaled its constrained wall temperature
of 137°C.

Given the area (volume) of the rectangular cavity as input, the second
optimization sub-problem is posed next. The principal design objective was to find
the shape change control variables that alter the shape of the top wall of the
rectangular cavity in order to diminish the maximum wall temperature of the left
heated wall. Of course, this objective was subjected to maintaining the bottom wall
horizontal (related to small velocities) and also to keeping the width of 20cm
unchanged from the first optimization sub-problem. The insulated bottom wall
does not need to be adjusted because the physics of fluids suggests that low
velocities and low temperatures take place along a path parallel to the bottom
wall. The implementation of the optimization code and the ASD involves the
definition of two control points for the shape change of the sensitive top insulated
wall. Preserving the upper two corner points stationary, two control points are
sufficient to define the geometry of the top insulated wall as a cubic spline. The
shape of the resulting cavity is shown in Figure 1(c). This new cavity retains the
major portion of the rectangular cavity, but is covered with an upper
parabolic-skewed insulated cap. The third cavity shape happens to be the
optimal cavity shape. At this stage, it should be pointed out that the compromise
shape smoothed out both upper left and upper right corners, which were
associated with fluid deceleration in the square and rectangular cavities. This
round shaped cap negates the abrupt 90° change in fluid direction (from vertical to
horizontal) of the upward hot air jet adjacent to the vertical heated wall.
Consequently, the upward air jet stays “more parallel” to the vertical heated wall.



This air adherence facilitates the removal of more heat in a marked fashion. The
relevance of this localized effect can be confirmed by observing the velocity field
plotted in Figure 4(c). In fact, this peculiar behavior has a direct repercussion on
the maximum velocity near the old left upper corner, which has now experienced
an increment of 84lcm/s compared with the maximum velocity for the
rectangular cavity (a gain of almost 8 percent).

Figure 3(c) shows the temperature field of the rectangular cavity with an upper
insulated parabolic-skewed cap, which turns out to be the optimal cavity. Recall
that the maximum wall temperature (the “hot spot”) for both square and
rectangular cavities took place at the upper left corner. An unexpected beneficial
effect of the disfigured optimal cavity is its capability of reducing the maximum
wall temperature from 137°C at the upper left corner (in other words at 10 cm from
the bottom) of the rectangular cavity to 107°C at a location 8cm from the bottom.

At this juncture, a one-to-one comparison between the performance of the initial,
the intermediate and the final cavities seems to be in order. First, compared to the
initial square cavity, the difference in maximum wall temperature represents an
huge decrease of 23°C. Second, directing the attention to the cross-sectional area, it
is recognizable that the final area for the capped rectangular cavity (optimal
cavity) is now 23cm? This size represents a mild increase of 3cm? over the area
of the intermediate rectangular cavity, but a dramatic decrease of 77cm® with
respect to the original square cavity. Unquestionably, the trade-off between the
diminutive gain in area (volume) and the immense reduction of the maximum wall
temperature seems to be advantageous from the practical standpoint.

The quantity of foremost importance in the thermal design of cavities with uniform
heat flux heating at one vertical wall is the maximum wall temperature that the heated
wall can sustain (the “hot spot”). Owing to this, it was deemed appropriate to plot in
Figure 5 the variation of the temperatures along the heated vertical wall with height for
the three cavities in question. At the lower left corner (the coldest point), the minimum
wall temperatures for the three cavities share a common value that is close to 62°C.
Irrespective of the shape of the cavity, the wall temperatures rise linearly with height
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Figure 5.

Temperature variation
along the heated vertical
wall
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up to a location at 8cm from the bottom. Besides, it is observable that the wall
temperature distributions for the three cavities reflect a pattern that is consistent with
the relation deduced by Kimura and Bejan (1984):

AT
e (gﬁ> K ©

where AT = Ty, — T across the boundary layer of thickness 6.

At any height (0 <y < 10cm), the wall temperatures for the capped rectangular
cavity (optimal cavity) lie above the wall temperatures for the rectangular cavity. Also,
the wall temperatures for the rectangular cavity lie above the wall temperatures for the
square cavity. At y = 8 cm, the temperatures for both square and rectangular cavities
curved up, the former reaching a value of 129°C and the latter reaching even a higher
value of 135°C. This linear increase in the temperature was predicted numerically by
Kimura and Bejan (1984). The physical explanation for this behavior is that the hot air
flow starts to turn away from the vertical direction to the horizontal direction well
below reaching the upper left corner; this dissimilarity results in a net convective heat
transport reduction in the vicinity of the corner. As expected, the boundary layer
breaks down near the upper left corner and near the bottom left corner where the air
flows horizontally, and the vertical temperature gradient vanishes.

The first two cavities (with straight walls and four sharp corners) display
well-established ascending patterns for the wall temperature. Contrary to this, the wall
temperature for the optimal capped rectangular cavity curved down at y = 8cm,
passing through a maximum of 107°C at y = 8 cm and thereafter decreasing gradually
to 105°C at the upper left corner (y = 10 cm). The representation in Figure 5 shows
quite vividly the impact that the skewed capped shape exerts on the horizontal top wall
of the rectangular cavity. Consequently, the addition of a skewed capped wall pays
dividends over the horizontal straight wall in providing a favorable trajectory for the
movement of the upward hot air jet, pushing down the maximum wall temperature by
20°C as a profitable by-product. Understandably, this thermal/flow/geometric feature
is highly desirable from the perspective of the cooling of heat producing electronic
components attached to the vertical walls in closed spaces.

The physical explanation for the fluid flow structure of the different shapes of the
wall temperature distributions may be done with the help of the scale analysis carried
out by Tannehill ef al (1997). Here, it was found that inside the thermal boundary layer
the air velocity is proportional to the temperature difference. Therefore, it is clear that
the presence of the horizontal insulated wall exerts drag on the air upflow jet, causing a
deceleration near the upper left corner. Conversely, the upper parabolic-skewed cap
creates a favorable path for the air upflow jet, accelerating the flow near the end of the
heated vertical wall. This acceleration intensifies the velocity of the air jet removing
more heat from the heated wall and bringing the wall temperature down. It may also be
speculated that the axial fluid conduction may contribute to the precooling of the wall
(Chow et al., 1984).

Certainly, the ability of an air layer to transfer heat inside a cavity may be controlled
by altering the shape of the cavity in the regions of high fluid velocities, resulting in an
optimal cavity shape. It should be added that if current manufacturing technology
precludes the construction of the recommended skewed-cubic cap at an acceptable cost,



a semicircular cap might substitute this characteristic shape. The latter configuration
does not deviate markedly from the optimal shape.

To summarize the geometric, velocity and temperature results in a qualitative
manner, Table III lists the intrinsic relationship between the three relevant quantities
for the three cavities analyzed. The table displays the cross-sectional area, the
maximum air velocities in the vicinity of the heated vertical wall and the maximum
wall temperatures at the heated vertical wall.

Finally, it should be added that the optimal design of cavities heated and cooled at
the sidewalls responds to a specific set of design parameters, namely: the working fluid
is air, a uniform wall heat flux, g, = 200 W/m?, convection to an external fluid with
temperature T = 25°C and an average convective coefficient s, = 20 W/m?C. The
maximum wall temperature at the heated wall was constrained at a ceiling value of
137°C. Perhaps, the design engineer may expect minor changes in the optimal design of
the cavity for a different set of design parameters and design constraints. Certainly, the
groundwork is set for future applications of the CFD-shape optimization united
methodology to solve a wide variety of problems in fluid-filled natural convection
inside cavities.

6. Conclusions

Relying on the numerical results that articulate concepts of fluid dynamics, heat
transfer and shape optimization, the conclusions that can be drawn from this work are
enumerated as follows.

(1) The output of a CFD in terms of velocity and temperature fields in a natural
convection square cavity code provides the necessary input for a shape
optimization code to perform automatic optimization of the shape of the
cavity in harmony with the pre-established design parameters and design
constraints.

(2) The shape optimization code proved to be an efficient tool in molding the
cross-sectional area of a natural convection cavity heated with a uniform heat
flux from the side. As a result, the upward airflow near the directly heated
vertical wall was forced to take a more efficient path, diminishing the maximum
wall temperatures along the heated vertical wall (the “hot spot”).

(3) It has been demonstrated that the miniaturization of natural convection cavities
constrained by maximum allowable wall temperatures at the “hot spot” is
feasible and also can be done in an optimal way.

Cross-sectional Maximum air Maximum wall
Shape of cavity area (cm®) velocity (cm/s) temperature (°C)
Square 100 7.49 127
Rectangular 20 (—80) 7.91 (+0.42) 137 (+10)
Capped rectangular (optimal shape) 23 (=177) 8.41 (+0.92) 107 (—20)
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Table III.
Comparison between the
initial, intermediate and

Note: *The numbers in parentheses represent deviations experienced by a quantity in a nonsquare final configurations of the

cavity relative to the original square cavity during the course of the shape optimization

cavities®




HFF
14,6

732

Notes
1. Color plots may be found in the Web site: www.emba.uvm.edu/~ acampo.

2. The mesh was the definite mesh employed for the calculation of the velocity and temperature
fields.
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